
AD-AliS 299 TEXAS UNIV AT AUSTIN DEPT OF COMPUTER SCIENCES Fir 9/2

A DISTRIBUTED ALGORITHM FOR DETECTING RESOURCE DEADLOCKS IN DIS -ETCtU)
AUG A2 K M CHANDY,.J MISRA AFOSR-81-0205

UNCLASSIFIED AFOSR-TR-82-0846 NL

ii '

,UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PACE (When Data Entered),

PAGE READ INSTRUCTIONSREPORT DOCUMENTAION P EBEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFOSR-TR- 82-0 8 4 6_ __ __ __ _ _ _ _

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A DISTRIBUTED ALGORITHMS FOR DETECTING RESOURCE TECHNICAL

DEADLOCKS IN DISTRIBUTED SYSTEMS S. PERFORMING OG. REPORT NUMBER

7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(&)

K.M. Chandy and J. Misra AFOSR-81-0205

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK:, AREA & WORK UNIT NUMBERS

Computer Sciences Department

University of Texas PE61102F; 2304/A2
Austin TX 78712

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Directorate of Mathematical & Information Sciences August 1982

Air Force Office of Scientific Research 13. NUMBER OF PAGES

Bolling AFB DC 20332 8
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED
15a. DECL ASSIFIC ATION 'DOWN GRADING

SCHEDULE

W S DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. -1 IU
s~u s EE ° ° B~° " . - ' OCT 1 4 19%2

IS. SUPPLEMENTARY NOTES

Proceedings of the ACM SIGACT/SIGOPS Conference on the Principles of Distributed
Computing, Augus*t 18-20, 1-982, Ottawa, Canada.

19. KEY WORDS (Continue on reverse aide if necessary and Identify by block number)

20, ,ABSTRACT (Continue on reverse side It necessary and Identify by block number)

Wl his paper presents a distributed algorithm to detect deadlocks in distributed

data bases. Features of this paper are (1) a formal model of the problem is
presented, (2) the correctness of the algorithm is proved, i.e., the authors

I. , show that all true deadlocks will be detected and deadlocks will not be reported
-j falsely, (3) no assumptions are made other than that messages are received

correctly and in order and (4) the algorithm is simple.

DD ,oi AN 73 1473 EDITION OF I NOV65 IS OSOLETE 9. 1 kCuASo I 4
SECURIVY CLASSIMAION OP'VRTS PAGV7"oh 91111a *red)

. 8
oST - 82-0846 8

I , , - .

A Dist I ibut d Algorithm for Dc ,-,,t i nq Pr,::o nrce (,' .

Deadlocks in Distributed S;y,;tem.;

K. M. Chandy arid J. Mi!.r;,
Computer Sciences Department

University of Texas; Austin, TX 78712

ABSTRACT one of the processes it is waiting for. The DDB
mod-el considered in .his paper and in [,,.6.71

This paper presents a distributed algorithm to assumes that a process can proceed unly wren it

detect deadlocks in distributed data bases, receives all resources that it is waiting for.

Features of this paper are (i) a formal model of The any/all dlffvr'n-e In these models reLJlts in

the problem is presented, (2) the correctness of completely different alorith, for deadlock

the algorithm is proved, i.e. we snow that all detection. Deadlock detection for a clas of

true deadlocks will be detected and deadlocks will communicating fi,itte state machines is corsi 'ered

not be reported falsely, (3) no assumptions are in 15]. In thif paper we are concerned with

made other than th3t messages are Ieceived dynamic detection of deadlocks rather than with

correctly and in order and (4) the algorithm is proving that specific communicating sequ-ntial

simple. machines do not deadlock, which Ic the prc. lem

considered In [5]. We consider the getsera] ,lass

1. INTRODUCTION of problems appearing in [3.4.7]. In p:rticular.
the VDD model we use is derived from fiqnasce and

A great deal of effort has gone into developing Muntz. one of the first pap,"s in this area. For

a distributed algorithm for detecting resource a complete review of the literaure see [4.681.

deadlocks in distributed data bases (PDDls)
13,4,7]. In a September 1980 paper Gligor and The organization of this paper is as follows.

Shattuck (] state "Renewed interest in Section 2 presents a si..iple formal mod!el of a

distributed systems has resulted in the distributed sstom; this model is calied the basic
publication of at .Cast ten protocols for deadlock model. Section 3 describes an algorithm to detect

detection. However, few of these protocols are deadlock in the basic mdel and presetts its

correct and fewer appear to be practical." In proof. Performance issues are found in s.ctio., 4.

this paper we present a solution to this much- A distributeo algorithm by which a deadlocked

studied problem. process can determine the identity of other

processes in the deadocked ret is presented in

The following paragraph briefly reviews the section 5. In section 6 we review the distributed

literature on distributed deadlock detection. A data base model presented by Menasce and Muntz

model of deadock and an algorit..s for deadlock (3], who were about the first to trrat the

detection su'table for messae passing systems problem. We then stow how the basic model

appears in (lj. The message model of deadock algorithm can be extended to solve the IDES

assumes that a process which is waiting to problem.

communicate with other processes, cannot proceed

with Its exeeulion until it communicates with any

2. THE BASIC MODEL

This work was supported in part by the

Air Force Office of Scientific Research 2.1. Goal of This Section
under grant AFOSR 81-0205 and the Univer-

sity Research Institute at The University One of the difficulties with work in the area

of Texas. of DDBs is in describing the model of a DDB
clearly and unambiguously. Since informal.

operational models often result. in ambiguity we

have chosen to describe our model by axioms. Oar
proofs of correctness use these axioms; they do
not rely on Itiplicit assumptions about DD13.. The

basic model which ia described in this section ir

a simple, abstrict model; its relevance t- DDBs
may not be clear immediately, but is di.;r-ssecd in
detail in section 6. In the basic mcdl, the
state of computation is represented by a graph

APJ)OVe8 'oz, aublb Le

I J

called a wait-for efrapil [3 In which tie verttles addition i, , I.".'' .;A of vi I 1'- i Ih, w. t-f r

represent processCS which May Stc l Mid
, graph. if e)tio, ul , .,, tt' I 117, i - , 4 "

messages. We use a wait-for graph molel bec.use Ciiin t carry ,ol a 1ti" , ,r)tir j,r,'eSses or

such of the earlier work is based on wjit-for request ,0ctiw. from other iI

graphs. Tine rraph also nelps to ,istinruish the
underlyitij, DOB1 computation from the eomputation We now dt..erihe the I.hvtor of a etwork of
associated with deadlock detection. pr oesae.; in terms of' .'ilu rel ,rj1 i. We uc

process Ill and vertex vi, Irtnrrhan,'..11 y.
The basic model is described by two sets of

axioms: rapi axiomns and prop.ess axioms. Graph 2. 3. G rajh _AxI(m:* GI -_G4
axioms specify how the wait-for graph may ch,'ne
over tim,. Griph axioms are concerned exelusively CI: (CreatIor.: A grey ,de (vi.vj)
with the underlying VDil computation and not with may be crea ted If -, ' (v1 ,v3)
the computation associsted wi th de:idlock does not exist.
detection. Process ayons are concerned with the
relationship between tle deadlock detection
computation and tfe underlying DDB computation. G2: (Blackenini'): A gr-y dge will

Te goal of this section is to present and turn black after an arbitrary,

motivate the graph and process axioms. The model finite tite.

is described and the graph axioms are motivated in
section 2.2, the graph axioms are presented in 2.3 G3: (Whitening): A black u,,'. (v1.vj)
and the problem of distributed deadlock detection may turn white only if v

1
has no

In the basic model is described in 2.4. The outgoing edges. (Only' active
problem dcscription relies on the ,raph axioms prcce;s..; may reply).
alone. The process axioms (section 2.5) are the
rules which must be obeyed by any deadlock
detection algorithm. An explanation for the disappear aftcr an arbitrary,

process axioms is presented in section 2.6. finite time.

2.2. Model Description We next define the deadlock detection problem
for the basic model and presont the process axioms

A distributed system consists of a'finite ser which must be followed by a deadlock detection
of processes. A process is in one of two states: algorithm.
active or blocked. A process pi is blocked if it
is waiting for one or more processes to carry ou.
some action (such as releasing resources neede" by 2.4. The I)eadlock Detection Problem in the Basic

pl). An active process is not waiting for any lodel
other process. When pi needs pj to carry out some
.ottion it sends a r to p when p1 carries A dark cycle, i.e. a cycle in which all edges
Only active processes may carry out actions for are grey or black (some may be grey and others
otheracrocessesehensemonlyarctivetprocessesfcrn black), will persist forever because, it follows
send replies. The state of execution of all from the graph axioms that edges in a dark cyclesendrepies. Thestae ofexeutio ofall cannot be whitened or deleted.
processes in a system is captured by a directed
graph G called the wait-for graph. There is a
one-to-one correspondence between vertices in G Problem PROBI" Construct a distributed

and processes in the system, with vertex vi algorithm by which a vertex vi can detect if it is

corresponding to process Pi" Edge (viv j) exists part of a dark cycle.

in G if and only if pi has sent a request to pj
and has not yet received a reply. The algorithm by which vi determines if it is

part of a dark cycle is called a probe
Edge Colours: The edges in G are coloured computation. In probe computations vertices send

grey, black or white. Edge (vi,.vj) is: messages, called probes, to one another; probes
are concerned with deadlock detection exclusively
and are distinct from requests and replies. We

grey: if Pi has sent a request to pj now present axioms which describe how processes
which pj has not received (yet). communicate; these axioms show the relationship

between requests, replies and probes. We assume
black: if pj has received a request from that messages (i.e. requests. replies and probes)

pl and has not sent the are received in finite time in the order sent.
corresponding reply to pj.

white: if p has sent a reply to pi which 2.5. Process Axioms P1 - P11

not received (yet). An explanation of these axioms Is given Insection 2.6.

We assume, for convenience, that there are
........

vertices in the wait-for graph corresponding to
terminated processes ar.d to prcesses that have f; :

yet to be created. This allows u3 to ignore theA
A v,. i , o .

Dii~t ' .

3. AN ALGOIIIIHM 1:o1 TIH BA:;IC MODEL
PI: If a probe is sent hy vi to vj

when edg- (vi.vj) i! grey, edge
(vivj) will turin black sometime 3.1. Goal of This nection
after this probe is sent and
before it is received. If a probe The goal of this section Is to pren:e t a
from vi i.; received by vl when solution to the problem. 11l1Olu4, pre,.;v'tted in
edge (vevj) ist black the (rey section 2.4: construct a distributed algorithm
(vjvJ) existed .,nd was dark (gre'y (i.e. a probe computation,) by which a vertex can

or biack) at all tifnes from the Jetect If it is part of a dark cyce. In this
Instant at which the probe was section we do not discuss the question of wheCrn a
sent, to the instant the probe was vertex should Iiitiate such a conputat ion. -this
received. question is considered in section 4. :',.,.tl 3.?

introduces probe computations. ,ecti 3' .3
P2: If a probe is sent by v to v presents the desired properties of probe 4

when (vi.v 3) is white then (v ,v) computations while section 3.14 presents the probe
will disappear sometime after this computation algorithm itself. Coriectness proofs
probe is sent and before It is are found in section 3.5.
received.

P3: A vertex vi can determine 3.2. Introduction to Probe Computations
(locally) if there is an outgoing
edge (vi:vj) to any v1, though it To determine whether it is on a dark cycle, a

cannot determine ts colour vertex v, initiates a computation called a probe
(locally). A vertex vj canO computation. Several vertlec may initiate probe
determine (locally) if there is an computations and the sane vertex may initiate
incoming black edge (vi.vj), from several probe computations. To distinguish each
any vi. probe computation, the messa es and variables used

in the n-th computation initiated by vert- i are

P4. Every probe will be received in tagged (in). In the next paragraph we shall

some arbitrary finite time after discuss one probe computation, say the (i.n)th.

it is sent. In the interests of brevity we shall nut tag
messages and variables in the following dincussion
with (in); the tag should be understood
implicitly.

2.6. Explanation of the Process Axioms

PI: A probe sent by vi to vj when (VI.vj) is A vertex v will send at most one probe to any

grey must have been sent after v sent vj the vk in one prose computation. Th probe ic said to

request which caused grey ed,.e Ivi,vj) to be be meaningful if and only If edge (v.,vk) exists

created. Since messages are received in the order and is black at the time that lk receives the

sent, the request must be received by vj (causing probe. From P3. vk can determine if a probe is

edge (vi,vj) to turn black) before the probe is meaningful.

received. The explanation for the second part of
PI Is similar.

3.3. Properties of a Probe Commjutatlon:_QRP j

P2: A probe sent by v to v when edge (ViVi) QRP2

is white must have been sent ahter vj sent vi tf~e
A probe computation is designed to have the

reply which caused edge (vi.vj) to change colour following two properties (proofs are in section
from black to white. Since messages are received 3.5):
in the order Sent, the reply must be received by
vi (causing edge (vivj) to disappear) before vi

receives the probe. QRPI If the initiator of a probe
computation is on a dark cycle
when it initiates the probe

P3: An edge (vi.v) can be created and deleted computation then the initiator
by vi, and v, alone; lience v can determine if it will eventually receive a
exists. An edge (vjvj) is black only if vj has meaningful probe.
received a request from vi and it has not yet sent
a corresponding reply. IHence vj Is aware of blackedge (vi~vj). QRP2: If the initiator of' a probe

computation receives a meaningful

probe then it Is on a black cycle
p: Basic rule of message coenunication. at the time at which it receives

the probe.

This completes the description of the basic
model. From now on, we will use only the axioms G1
- Gi and P1 - P4 to reason about the computation.
Therefore, we do not use the terms "request,"

"reply, "resource," etc. hereafter.

L

ee1-cf(. K01, are aill black at ILK), we will
3.4. Algarithm rur a_1robe Computation provL. that e'1.0? ,..,K, are4 all black at t(K.1).

We "Iat Prove " fat eKil l its~ in the i irttrval
Algoritim for the initiator,24 (t(K). t(K41)] and that it is black at t(K+1).

From ste-p A? of' tile algorithm, e~. existed at time

AO: Send probes along all out go Ing? t(K). from the definition of' meanitir1ui probe.
edges. eic, exists jnd is bl~v:k it a late-r tr t(r.*1).

From Pl. eK.j exi ited from thle tin tant, t' that
vj(K) sent tile Plrube to tille t(Ft 1) ;it which

Al: Upon receiving thle first, v&fv, 1). receivi-d tile probe. Note
meaningful probe declare that I'v1 t t t(K+i). From thle algorithm (:;,-c note
is on a black eycle."1 below - algorithn) this odo.- exisit-J ;t all IireIfrom t (K) to tn lHence e., exnt9m at ;ill times

Aorthn for a vertex v otherj thanrj the from t(K) to t(K-1). We now prov tlat edges
initiator..K exit.t'd and wpre black In this jiterval.

Thi s follows from. tile obse-rvation tha~t if e k
exists in the interval [t(K).t(K.1)), then ek-l

A2: Upon receiving the first exists and remains black in this Interval (from
meaningful probe send probes on induction hypoth,!sis and G3). for k = ,..,K.
hl outgoing edges. This proves thc assertion.

Note: Each step AO,Al.A2 of the algorithm. We have shown that a1 probe computation
once started must be completed before the process satisfies the desired properties presented in
can send or receive other messages. Therefore the section 3.3. !*1 the 'rext section we di,_cuss
set of outgoing edges from process v~ in step AO Issues related to performanc.
(and process vj in step A2) do not c iange during
the step.

ii. PERFORMANCE ISSUES

3.5. Proof of Correctness of a Probe Computation

11.1. Goal Of Tfhis Secio'n
Theorem 1 (Property QRPI)

In sectioni 3 we presented an algorithri (probe
computation) ly which a vertex can deteroine if it

If the initiator Is on a dark cycle when it Is on ii dark cycle. In this -ection we will begin
Initiates the probe computation then it will by discussing the question of when a vprte-x should
eventually get a meaningful probe, initiate a prolbe computation 0~.;?). It.Q. volume of

message traffic associated with probe computations
Proof': Let the initiator vi, be on a dark (and and methods for reducing the number of probe

therefore permanent) cycle C. vi will send Eprobe nomputations are discussed in section 4l.3.
to its successor vertex v i n C (i.e. edge (vi. 1
is In C). and from PI tf~is probe is meaningfu X;
similarly vj will sda meaningful probe to its 4.2. Whenl Should a Vertex Initiate a Probe
Tuccessor in C, and so on, and thus every vertex %luain
on C (including the initiator) will eventually Cmuain
receive a meaningful pr~obe. -It is sufficient for any__one vertex on a dark

cycle to detect that it is deadlocked provided
Theorem 2 (Property QRP2) this vertex later informs all other vertices on

the dark cycle that they arc deadlocked too. An

If the initiator receives a meaningful probe algorithm by which a deadlocked vertex informs
then It is on a black cycle when this probe Is other vertices that they too are deadlocked is
received, presented in section 5. Therefore, in this

section we need only be concerned with an
____ Te iitato istheony vrte whch initiation rule by which at le ast one vertex In a

Proof: Th ntao steol etxwih dark cycle will detect deadlioc~k.__
can send a probe without having received a
meaningful probe (follows from step A2 of the
algorithm). Hence if the initiator v receives a We employ thle following Initiation rule: A
meaningful probe, there exists a finite sequence vertex v1 iInitiates a probe computation when any
IF v(n) where (1) v av 3(, v1 and outgoing edge (Vi.V,) is added to the wait-for

at~ ~ di~~t c a meanin prbe graph. With this rble, If the addition of edge
(" ti e i)t ad _1 <om) k= I. -J(k L ,iv creates a dark cycle in the wait-for
edenote 'Le edge (v&Ilk 1)v NOk)' We will prove graph. then vi will detect that It Is on a dark

te following assert Lon fof all k. 1<k(n by cyrnle. and hence deadlocked. Rules whinh yield
inucin n k: at tme tk) th dgs better performance are treated in the next

thi2-e k are all black. The theorem then setin
follows b setting ken in this assertion. For

kcl th asertonfollows from the definition of
meanngfl prbe. Now inductively assume that

4.3. 1PetrformaneAe.ctsoftieA . rith= H uii t.her,.aI ter neid% M' where

Vikvlii 1;t jto every verturx vk whtr
Recall that to distinguish probe computations (Vk.V) 1,a)1.1.k, if it ha,.4 not alre;,dy sent the

Initiated by different vertices. and by the same Sm, message, I' to vk. Since M only contains
vertex at different times we tag the n-th probe edg/es on periont, black p:ths lea,,ttif " from vi,
computation initiated by vi with (in), i.e. all H' only vont: I n- edgos on p, rmanent t, ,ak patri
probes and variables associated with that leading froit vk. It is evident that every vert,.x
computation are tagged (i.n). If probe will determine all permanent black paths leading
computation (i,n) is initiated, all probe from it in finite time. A WFGD computation will
computations (1.k) with k<n may be ignored. Cease becase a vertex never sends the name
Therefore, every vertex need only keep trak of meisage (set of edges) twice to another vertex.
one. (the latest) probe computation initiated by
each vertex. Hence every process must keel) track
of N probe computations where N Is the numher of 6. THE DISTRIBUTED DATA BASE PROBLEM
vertices in the f-aph. For a given probe

computation, a vertex sends only one probe on an 6.1. Goal of This Section
outgoing edge. Hence, there can be at most N

probes in a single probe computation. We have presented and proved an algorithm for
the basic model. We now show how the lgorithm for

The numter of probe computations initiated can the basic model can be extended to handle the
be reduced by having a vertex initiate a probe distrib.ted data base model considered in [3,4].
computation only if an outgoing edge (vi,v) has We first review thre Menasce-Muntz DDB model
been in existence continuously for some tjme T, (section 6.2) and point out the differences
where T is a performance parameter. If edee between the DIA[l model and the basic n.,del in
(vj,vi) is deleted before T time units have section 6.3. An abstraction of the JOES model,
eIapsd then v has avoided initiating a probe based on colouired graphs is found in sention 6.4.
computation. issues related to determining the Probe computations for the DDB model are
optimum value of T are found in [6). Tire basic introluced in ncction 6.5. The aleorithm to solve
tradeoff is -hat if T is too small too many probe the DDB deadlock probler.m is presented in section
computations are initiated and if T is too large 6.6, and a performance issue specific to bifBs is
the time taken to detect deadlock (which is at discussed in section 6.7.
least T) is too large.

6.2. An Introduction to theDDB Deadlock _Problem
5. PROPAGATING WAIT-FOR GRAPH INFORMATION TO

DEADLOCKED VERTICES A DDB is implemented by N 22utorjer S'....SN"
There is a local operating system or controller Cj
at each computer S. to schedule procese . .^anage

5.1. Goal of This Section resources and carrj out co,nmunicatiots. lrere are
i transactinn T.T 14 running on the V):I1 A

A distributed algorithm by which a vertex can transaction is implemented by a collection of
determine all permanent black paths leading from processes with at most one process per computer.
It is " ited in this section; the permanent Each process is labeled with a tuple (T1,. I where
black pauns form the deadlocked portion of the Ti is the identity)f the transaction tiat the
wait-for graph, and determining the edges and process belongs to and S1 is the computer on which
vertices in the deadlocked portion of the graph is the process runs. The tuple (Tt.-) uniquely
useful in breaking deadlocks. The question of how Identifies a process.
deadlocks should be broken is not treated here;
the reader is encouraged to read 13.6]. A controller Cj sends a message to a process

(Ti.S j) by putting the message in the process's
memory area and scheduling the process. A process

5.2. Computation to Determine the Walt-For Graph (T1 ,Sj) sends a message to its controller Cj by
(WFGD Computation) putting the message in the controller's memory

area and then returning control to the controller.
Messages in a WFGD computation consist of sets A process (Ti.S) communicate:; directly only with

of edges. A message M sent to a vertex vj is a its own controller C1 . Controllers may nend
set containing only edges on permanent black paths messages to one another. Messages sent by any
(i.e. paths all of whose edges are black and are controller C to any controller Cm will be
guaranteed to remain black) from vj. Each vertex received by 8m in finite time and in the order
vj has a local variable St, which is the s3t of sent by C1 .
*8ges (that v is aware 9f) on permanent black P

paths leading from Vj. Initially St is empty, for At some stage in a transaction's computation it
all J. After the initiator vi of a probe may need to "lock" resources (such an files).
computation receives a meaningful probe, it There are different kinds of locks (read locks and
declares that it is on a black cycle and write locks for instance) but the detai lS
thereafter sends a message M - f(v1 ,vi)) to every regardin.g locks and locking protocols are not
vertex v if edge (v ,vi) is black. Since vi is relevant to the problem describe]i here; the reader
on a ac cycle v vl.v) must be permanently Is referred to (3.6]. When a procet s (T,S)
black. On receiving a message M, Vj sets t

needs a resource It sonde a request to IE3

conltroller C. If C manage:; the resuurce it may request anJd white when C,, k.ive.s tije roquo.;1,'1

accede to the ro'. ,,s s request immediately or th- re:fiirv.e to (T *;n) (t I |l l t .comtu it mhi r eu e has

process may have to wait to ,,equire the rvquested me:io.ne 10 (1,' soy|n that thn r,.iiijrce hiss
resource. !f the requested resource is .,n. y bl acquired). ;ince th,: existenc', (i" an intra-

ontroller -J', M ((0:/)(k'J) d,,.p.ntd3 only
some other controller Cm, then Cj transmit: t r'o ntrol l,. CtiTe j I Tk.'e': th.,t (Ti.5 only
request on to process (Ti.r';l via o itroll.'r Cr; a cont ol hr bw ' nT I t• re~ties r,.'u,'

4
,inid *y Tk .d (,, tance &

the request is now made locally by process (Ti.:r reules a ,"urce n Y(T k-) ene
to its own eontroller Cm . Wlen (T m) acquiresd" T .) a ' w
the requested resource from C. I .t sends a me-sage black.

to (T1 ,Sj) (via C, and C) stating that the graph model is described by the following axioms.

requested resource has been acquired. (Ti.S j) may
now proceed with its computation. When processes GI-G6 DDB
in a transaction Ti no longer iieed a resource .h..iom........... ..
manar-d by controller Cm. they communicate with
process (TiiSm) who is responsible for releasing Axioms regarditnjitra-controller edges
the resource to Cm.

GI: A black intra-controller edge
A process cannot proceed with its computation ((T1 iSj),(T k;,)) may be added to

unless it acquires every resource that it G If none exiss.
requests. Thus a process 1s blocked permanently
from proceeding with computation if it never :
acquires a requested resource. We assume that if G2: A bla)k intra-controller edge

a single transaction runs tself in the DDB it ((Tabj eetede

will teroinate in finite time and eventually if t4.S)as no outjuirig edges.

release all resources. When two or more
transactions run In parallel. deadock may arise Axioms regarding inter-controller edgs
because each transaction may he blocked needing -naioous-to-t ce basic-mcdel)
resources held by other transactions. The problem
is to construct an algorithm to detect deadlock. G3: A grey inter-controller edge

((T, S),(T , m)) may be added to
G if tle edge does not exis;t.

6.3. Difierence Between the DDB and Basic Model

In the basic model, one process directly :A grey inter-controll r edge will
requests another to carry out some action. In the turi black i an arbitrary, finite i
DDB model, a process may not be aware of other
processes; furthermore, a process, only
communicates directly with its controller. Hence, GS: A black Jnter-controller edge
the primary difference between the basic model and ((T ,S),(Tijm)) can turn white
the DDB model is that in the bat.e model a process if t TiSm has no out~oing edges.
determines locally which processes to (request
actions from and) wait for, whereas in the DDB G6: A white inter-controller 'Ige will
model the controlle- at each computer determines disappear in arbitrary, .finite
the process waiting behavior at that computer. time. r

A dark cycle in G will persist for(ever. The
6.4. A Graph Model of DDB Deadlock problem is to construct a distributed algorithm by

As in the basic model there is a one-to-one which a controller C can determine if one of its
correspondence betwen poess n th ss tm a-nd processes (TI.Sj) As on a dary cycle, The

eorrespondence between processes in the system and algorithm must satisfy the following process

vertices in the wait-for graph G. There is an edge axioms which are analogous to the process axioms
in G from a process (TitSj) to another process for the basic model.
(Tk.Sj) at the same computer Sjt if controller Cj
has a request from (Ti.Sj) for resources held by PI: If a probe is sent by C to C when edge

ffk,$). Such an edge In G (which is Incident on (l ,(IS rb is seny then tho edge will turn

vertI e3 corresponding to processes at a single nt d befre

controller) is called an intra-controller edge. blac %ome time after the probe m sent and before
There Is an edge in G from a process (TifSro) to C we eee If a hen frio dgs received by

another process (Ti,Sm) within the same mwhen the ede is black then tle edge existed
transaction Ti (but at a different computer) if and was dark from the insanet that the probe was

(Ti.5j) is waiting for a Message that It has sent to the instant that the probe was received.

acquired a resource managed by Cm; such an edge is
alled an inter-controller edge. P2: If a probe is sent by Cm to Cj when edge

((TjSj).(T.,Sm)) Is white, then the edge will

The colour of an inter-controller edge from disappear some time after this probe is sent and
(TI,*S) to (TiSm) is grey, black or white, where before it is received.
the eglours have the same meaning as in the basic
model, i.e. it is grey, if (TitS i) has requested a
resource managed by C and C, ha not received the
request yet; it turns black when Cm receives the

alia

P_: A controller C can determine locally if AlprOi.thIn for ji i _ roIl le C Othvr Thai the

there is an outgoing edge from any of its Initiator
processes (T ,S 1) to any other process; however,
it cannot determine locally the colour of inter- £2: Upon receiving a meaningful probe
controller edges outgoing from (Tl ,St). A along an Inter-controIl,r edge
controller C can determine locally if there i. an directed towards a process (TI1 3m)
Incoming black edge to any of its processes label (TiS) and all processes
(TI.SX). reachable Iron (TI,11) dionit

intra-controller edges. If there

P4: A probe sent along any edge is received is an inter-controller edge from a
correctly and within finite time. labelled process (Ta, S) to any

process (Ta,Sb) then send a probe

to Cb along edge ((TaZm),(T , z))
if such a probe has not aready

6.5. The Probe Computation in the flDD Model been sent.

A probe computation in a DDB model is exactly
the same as in the basic model except that instead Note: Each step AO.AlA2 of the algorithm.
of processes, econtrollers send probes to one once started, must be completed before the
another. Instead of having a process (Ti.Sj) send controller can send or receive other m.ssages.
a probe to another process (Tk S) at the same Hence the intra-controller edges and outgoing
computer S.. controller C merely labels (Tk- S) Inter-controller edges from processes in S. cannot
as having ieceived a mean fngful probe. As in tAe change during steps AO and Al. The aAalogous
basic model, the n-th probe computation initiated condition holds fir Sm in ster A2.
by controller Cj is tagged

(j,n). i.e. all labels

and probes are tagged (J.n). If there is an
outgoing inter-controller edge ((TiS)TiSm))The proof of the algorithm for the DD model is

from a labeled process (TIVS) then C sends a exactly the same as for the basic model. The
ro s probe carres th performance issues discussed for the basic model
prone to Cw. Ts poe ent it the tag also apply to the DDB model. However, there is
(jn) as well as the identity of the edge one performance issue which arises in the DDB
aWon. Sd) ((Ti- S)) this probe is said to be sent model which does not arise in the basic model.
along edetT. T iS m)). This probe, from The algorithm presented above requires a
controller C to atlother controller Cm. is said to coetllerito initate aoepreu re
be meaningful if the edge ((Ti,S),(T',Sm)) exists controller Cj to initiate a separate probe
and is black at the time at whidh Cm receives the computation for each of its constituent processes

probe. We now describe a single probe (TiS). We now show how the number of probe
computation, say the (j.n)th. Though the tag computations can be reduce..

(J,n) does not appear explicitly i" the
description, it should be assumed.

6.7. How to Avoid Initiatinp a Separate Probe
Computation for Each Process

6.6. Algorithm for a Probe Computation When a controller C wishes to determine if any

of Its constituent proesses are on dark cycles'it
Algorithm initiated by C to determine if first determines if there is a cycle along intra-
process (T4 ,S on adarcyc controller edges alone. If there is no intra-

controller cycle, then any cycle through any

AO: Label all processes (TkSj) constituent process (T iS) must include an inter-

reachable from process (TiS j) controller edge directW towards a constituent
along intra-controller edges, If process -- Tk-51). Hence, it is sufficient for a

CT,.Sj) is labelled. then declare controller to initiate separate probe computations

that it is on a black cycle of for processes with incoming (black) inter-
Intra-controller edges, controller edges. Hence, when a controller wishes
Otherwise, if there is an inter- to determine If any of its processes are
controller edge from a labelled deadlocked it initiates Q separate probe
process (Ta.Sj) to any process computations where Q is the number of constituent
(Ta,.Sb) then send a probe to Cb processes with incoming, black, Inter-controller

along edge ((Ta.Sj),(TaSb)). edges.

Al: Upon receiving a meaningful probe
along any inter-controller edge 7. SUMMARY

((TS_),(TS)), labe, (T ,S)
andreachable frm We have presented a solution to the much-
(TS) along untra-controller studied problem of deadlock detection in
ed (T ,) is labelled, distributed data base systems. A formal model
declare that (TS) is on a black based on coloured graphs was uned. For purposes
cycle, of exposition, the problem was introduced in two

stages: in the first stage, a simple model,
called the basic model was introduced and in the
second stage the Menasc-Muntz distribW.(,j data

base model was discussed. Our algorithm was 8. Molli.n, C.. "'Distritejt'd 11;11.1 Iha.
proved correct. Details rettarding tih, difffereilt 1;iajeni.ert - 'rogre.is. Prot lems, Stne
modes of resource locking i j. other f.,,tures of Proposals and Future PirecLions."
distributed data bases hive not been included Computer Scirnce, D)epartmnv.nt, Wr t
here. The reader is referred to [3.6]. PI'er WP-7802, University of T,'xas,

Austin, Texas 78712. Hay 1979.

A great deal of work remains to be done on
evaluating the performance of the algorithm and on
developing algorithms for different types of

distributed systems.

8. ACKNOWLEDGEMEAT

Our work in this general area resulted from

reading a seminal paper by Dijkstra and Scholten

on terminatiot. detection (2] and by later

discussions with them. Virgil Gligor showed us

that the DDB problem, though apparently simple.
was non-trivial and interesting, and led us to the
sizable body of work on the subject.

9. REFERENCES

1. Chandy. K. 1., J. Misra and L. Haas, "A

Distributed Deaulock Detection

Algoritnm and Its Correctness Proof."
submitted to the Communications of the

ACK.

2. Dijkstra, E. W. D. and C. S. Scholten.
RTermination Detection for Diffusing

Computations," Information Processing

Letters. 11, 1, August 1980. pp 1-4.

3. Menasce. Daniel and Richard Muntz.

"Locking and Deadlock Detection in
Distributed Data Bases." IEEE
Transactions on Software Engineering,
Vol. SE-5. No. 3. hay 1979.

4. Gligor, Virgil and Susan H. Shattuck,
"On Deadlock Detection in Distributed
Systems," IEEE Transactions on Software
E.ineering. Vol. SE-6, No. 5.
September 1980.

5. Yu. Yao-Tin and Mohamed Gouda.
"Deadlock Detection for a Class of
Communicating Finite State Machines."
TR-193. Computer Sciences Depatment.
University of Texas. Austin, Texas
78712.

6. Gray. J. N., "Notes on Data Base
Operating Systems," in Operatina
Systems and Advanced Course, Berlin.
Heidelberg: Springer-Verlag. 1978, Ch.
3.F. Pp. 394-481.

7. Obermarck. Ron. "Global Deadlock
Detection Algorithm." RJ2845. I BM
Research Laboratory. San Jose,
California 95193. June 1980.

